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Abstract—The majority of the human genome consists of
repeated sequences. An important type of repeated sequences
common in the human genome are tandem repeats, where
identical copies appear next to each other. For example, in the
sequence AGTCTGTGC, TGTG is a tandem repeat, that may
be generated from AGTCTGC by a tandem duplication of
length 2. In this work, we investigate the possibility of generating
a large number of sequences from a seed, i.e. a small initial
string, by tandem duplications of bounded length. We study
the capacity of such a system, a notion that quantifies the
system’s generating power. Our results include exact capacity
values for certain tandem duplication string systems. In addition,
motivated by the role of DNA sequences in expressing proteins
via RNA and the genetic code, we define the notion of the
expressiveness of a tandem duplication system as the capability of
expressing arbitrary substrings. We then completely characterize
the expressiveness of tandem duplication systems for general
alphabet sizes and duplication lengths. In particular, based
on a celebrated result by Axel Thue from 1906, presenting a
construction for ternary squarefree sequences, we show that
for alphabets of size 4 or larger, bounded tandem duplication
systems, regardless of the seed and the bound on duplication
length, are not fully expressive, i.e. they cannot generate all
strings even as substrings of other strings. Note that the alphabet
of size 4 is of particular interest as it pertains to the genomic
alphabet. Building on this result, we also show that these systems
do not have full capacity. In general, our results illustrate that
duplication lengths play a more significant role than the seed in
generating a large number of sequences for these systems.

Index Terms—Capacity, expressiveness, tandem repeats, tan-
dem duplication, finite automaton, irreducible string

I. INTRODUCTION

More than 50% of the human genome consists of repeated
sequences [9]. Two important types of common repeats are
i) interspersed repeats and ii) tandem repeats. Interspersed
repeats are caused by transposons. A transposon, also known
as a jumping gene, is a segment of DNA that can copy or
cut and paste itself into new positions of the genome. Tandem
repeats are caused by slipped-strand mispairings [[13|]. Slipped-
strand mispairings occur when one DNA strand in the duplex
becomes misaligned with the other.

Tandem Repeats are common in both prokaryote and eu-
karyote genomes. They are present in both coding and non-
coding regions and are believed to be the cause of several
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genetic disorders. The effects of tandem repeats on several
biological processes is understood by these disorders. They
can result in generation of toxic or malfunctioning proteins,
chromosome fragility, expansion diseases, silencing of genes,
modulation of transcription and translation [[16] and rapid
morphological changes [5].

A process that leads to tandem repeats, e.g. through slipped-
strand mispairing, is called tandem duplication, which allows
substrings to be duplicated next to their original position.
For example, from the sequence AGTCGTCGCT, a tan-
dem duplication of length 2 can give AGTCGTCGCGCT,
which, if followed by a duplication of length 3 may give
AGTCGTCGTCGCGCT. The prevalence of tandem re-
peats in the human genome [9] motivates us to study the
capacity and expressiveness of string systems with tandem
duplication, as defined below.

The model of a string duplication system consists of a seed,
i.e., a starting string of finite length, a set of duplication rules
that allow generating new strings from existing ones, and the
set of all sequences that can be obtained by applying the
duplication rules to the seed a finite number of times. The
notion of capacity, introduced in [4] represents the average
number of m-ary symbols per sequence symbol that are
asymptotically required to encode a sequence in the string
system, where m is the alphabet size (for DNA sequences the
alphabet size is 4). The maximum value for capacity is 1. A
duplication system is fully expressive if all strings with the
alphabet appear as a substring of some string in the system.
As we will show, if a system is not fully expressive, then its
capacity is strictly less than 1.

Before presenting the notation, definitions, and the results
more formally, in the rest of this section, we present two
simple examples to illustrate the notions of expressiveness and
capacity for tandem duplication string systems. Furthermore,
we outline some useful tools as well as some of the results of
the paper.

Example 1. Consider a string system on the binary alphabet
¥ = {0, 1} with 01 as the seed that allows tandem duplications
of length up to 2. It is easy to check that the strings generated
by this system start with 0 and end with 1. In fact, it can be
proved that all binary strings of length n which start with 0
and end with 1 can be generated by this system. The proof
is based on the fact that every such string can be written as
0m1"2...0"-11", where each r; > 1 and v is even. A natural
way to generate this string is to duplicate 01 3 times and then
duplicate the Os and 1s as needed via duplications of length
1.

Expressiveness: From the preceding paragraph, every binary
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Fig. 1. The finite automaton for the systems S = ({0, 1},01, T2%™), where
k > 2, including the system of Example [I] Notation used here Ts described
in detail in Section [l

sequence s can be generated as a substring in this system as
0s1. For example, although 11010 cannot be generated by this
system, it can be generated as a substring of 0110101 in the
following way:

01 — 0101 — 010101 — 0110101.

Hence this system is fully expressive.

Capacity: The number of length-n strings in this system
is 272, Thus, encoding sequences of length n in this system
requires n—2 bits. The capacity, or equivalently the asymptotic
average number of bits (since the alphabet ¥ is of size 2) per
symbol, is thus equal to 1. This is not surprising as the system
generates almost all binary sequences. (I

Observing these facts for an alphabet of size 2, one can
ask related questions on expressiveness and capacity for other
alphabet sizes and duplication lengths. However, counting the
number of length-n sequences for capacity calculation and
characterizing fully expressive systems for larger alphabets are
often not straightforward tasks. In this paper, we study these
questions and develop methods to answer them.

A useful tool in this study is the theory of finite automata.
As a simple example note that the string system over the binary
alphabet {0, 1} in the preceding example can be represented by
the finite automaton given in Figure [1| The regular expression
for the language defined by the finite automaton is

Roy = (071)7, (1)

which represents all binary strings that start with 0 and
end with 1. For definitions of finite automata and regular
expression, the reader can refer to Section @

One can use the Perron-Frobenius theory [7], [[12] to count
the number of sequences which can be generated by a finite
automaton. This enables us to use finite automata as a tool
to calculate capacity for some string duplication systems with
tandem repeats over larger alphabet.

In our results, we find that the exact capacity of the
tandem duplication string system over the ternary alphabet
{0,1, 2} with seed 012 and duplication length at most 3 equals
log, % ~ (0.876036. Moreover, we generalize this result
by characterizing the capacity of tandem duplication string

systems over an arbitrary alphabet and a seed with maximum
duplication length of 3. Namely, we show that if the maximum
duplication length is 3 and the seed contains abc as a substring,
where a, b, and ¢ are distinct symbols, then the capacity
=~ 0.876036 log|s; 3. If such a substring does not exist in the
seed, then the capacity is given by log|y, 2, unless the seed
is of the form a™, in which case the capacity is 0. Some of
these results are highlighted in Table

Our next example presents a system that, unlike that of
Example (1} is not fully expressive.

Example 2. Consider a tandem duplication string system over
the ternary alphabet {0, 1,2} with seed 012 and maximum
duplication length 3. This system is not fully expressive as
it cannot generate 210, 102, or 021, even as a substring. We
provide a simple proof.

Proof: Let z = a~y(3, where «, v and 3 are strings over
{0,1,2} with |af,|8] > 0, and 1 < |y| < 3. Suppose z
does not contain 210, 102 or 021 as a substring. We will now
show that z* = a5 does not contain 210, 102 or 021 as a
substring either. We have three cases:

o For v = ay, with a; € {0,1,2}, the only possible new
substrings generated in z* which may not occur in z are
the ones with suffix aja; or prefix aia;.

e For v = ajag, with aq,as € {0,1,2}, the only possible
new substrings of length 3 generated in z* are ajasa;
and asajas.

o For v = ajasaz, with a1,a9,a3 € {0,1,2}, there is no
substring of length 3 in z* which does not occur in z.

Hence, if z does not contain 210, 102 or 021 as a substring,

neither will z*. Since the seed 012 does not contain 210, 102 or
021 as a substring, neither will any other string in the system.

|
Therefore, this tandem duplication string system is not fully
expressive. (]

Based on the previous example, one may ask what happens
if we start with a seed that contains one of the strings 210,
102, or 021, e.g., if we let the seed be 012107 Does the system
become fully expressive? While this system can generate all
strings of length 3 as substrings, the answer is still no as shown
in Theorem [2} Regardless of the seed, a ternary system with
maximum duplication length of 3 is not fully expressive. We
show in Theorem [ that a maximum duplication length of at
least 4 is needed to arrive at a fully expressive ternary system.

While for alphabets of size 2 or 3, increasing the maxi-
mum length on duplications turns a system that is not fully
expressive into one that is, for alphabets of size 4 or more,
duplication systems are not fully expressive regardless of
how large the bound on duplication length is. The main
tool in constructing quaternary strings that do not appear
independently or as substrings in these systems is Thue’s
result proving the existence of ternary squarefree sequences
of any length. A string is called squarefree if it does not have
a tandem repeat of any length (Note that unary and binary
squarefree sequences of arbitrarily large length do not exist.).
The existence of such sequences underlies the significant shift
in the behavior of tandem duplication systems with regards



3 s k Capacity
{0, 1,2} 012 3 ~ 0.876036
arbitrary | xabcy | 3 | =~ 0.876036 1og|z‘ 3
TABLE I

CAPACITY VALUES TANDEM DUPLICATION STRING SYSTEMS (3, s, Té‘}j
HERE z,y € ¥*, AND a, b, c € ¥ ARE DISTINCT. N

P s k fully expressive
{0,1,2} | arbitrary <3 No
{0,1,2} 012 >4 Yes
Size > 4 | arbitrary | arbitrary No

TABLE 11
EXPRESSIVENESS OF TANDEM DUPLICATION STRING
SYSTEMS ?E, s, 72‘12"5'

to expressiveness as a function of alphabet size. Some of our
results on expressiveness are summarized in Table [

As part of this paper, we also study regular languages
for tandem duplication string systems. In [11f], it was shown
that the tandem duplication string system is not regular if
the maximum duplication length is 4 or more when the
seed contains 3 consecutive distinct symbols as a substring.
However for maximum duplication length 3, this question
remained open. In this paper, we show in Theorem [5that if the
maximum duplication length is 3, a tandem duplication string
system is regular irrespective of the seed and the alphabet
size. Moreover, we characterize the exact capacity for all these
systems.

Related Work: Tandem duplications have already been
studied in [2]], [3]], [10]. However the main concern of these
works is to determine the place of tandem duplication rules in
the Chomsky hierarchy of formal languages. A study related
to our work can be found in [4], [11]. String systems with
different duplication rules, namely end duplication, tandem
duplication, reversed duplication and duplication with a gap,
are defined and studied in [4]]. In end duplication, a substring
of certain length k is appended to the end of the previous string
- for example, ACTGT — ACTGTCT. In reversed tandem
duplication, the reverse of a substring is appended in tandem in
the previous string - for example, ACTGT — ACTTCGT.
In duplication with a gap, a substring is inserted after a certain
gap g from its position in the original string, for example,
ACTGT — ACTGCTT.

For tandem duplication string systems, the authors in [4]
show that for a fixed duplication length the capacity is 0.
Further, they find a lower bound on the capacity of these
systems, when duplications of all lengths are allowed. In this
paper, we consider tandem duplication string systems, where
we restrict the maximum size of the block being tandemly
duplicated to a certain finite length.

In the rest of the paper, the term tandem duplication string
system refers to string duplication systems with bounded
duplication length.

The rest of the paper is organized as follows. In Section
we present the preliminary definitions and notation. In Section
we derive our main results on capacity and expressiveness.
In Section we show that if the maximum duplication length
is 3, then the tandem duplication string system is regular

irrespective of the seed and alphabet size. Further, using the
regularity of the systems, we extend our capacity results. We
present our concluding remarks in Section

II. PRELIMINARIES

Let X be some finite alphabet. An n-string © = x122 - - Ty,
€ Y™ is a finite sequence where z; € ¥ and |z| = n. The set
of all finite strings over the alphabet ¥ is denoted by ¥*. For
two strings x € X" and y € X™, their concatenation is
denoted by zy € "™ For a positive integer m and a string
s, s denotes the concatenation of m copies of s. A string
v € X* is a substring of z if z = uvw, where u,w € X*.

A string system S C X* is represented as a tuple S =
(3,5, T), where s € ¥* is a finite string called seed, which
is used to initiate the duplication process, and 7T is a set of
rules that allow generating new strings from existing ones [4]].
In other words, the string system S = (X,s,7) contains all
strings that can be generated from s using rules from 7T a
finite number of times.

A tandem duplication map 7 g,

uvvw,
Ti,k ({L‘) = {

x, else,

x = wow, |u| =1, |v| =k,

creates and inserts a copy of the substring of length k& which
starts at position i + 1. We use 7/ : ¥* — X* and 71" to
denote the set of tandem duplications of length k, and tandem
duplications of length at most k, respectively,

T = {Typ - i e NU{0}},
TU" = {Ti;:i € NU{0},j €N, j <k}.

With this notation, the system of Example [T| can be written as
({0,1},01, 725™).
The capacity of the string system S = (X,s,7T) is defined

as

cap(S) = limsup 2)

n—00 n
Furthermore, it is fully expressive if for each y € X*, there
exists a z € .S, such that y is a substring of z.
A useful tool in calculating capacity of tandem duplication
string systems is deterministic finite automaton (DFA) which
consists of:

o A finite set of states Z.

o Alphabet X.

e Transition Rule § : Z x ¥ — Z.
o Start state z, € Z.

o A set of accept states Y.

There also exist non-determinisitc finite automata. In this
paper however, all the automata considered are deterministic.
Henceforth, we will be using finite automaton to refer to a
DFA. An example of a finite automaton is given in Figure
For this finite automaton we have,

o /= {Start751, SQ}

« X ={0,1}.

. (5(Start,0) = S1, 5(51,0) =

Sa, 6(52,0) =81, §(S2,1) = Ss.
o z, = Start.

Sy, 0(51,1) =



bt

1

Fig. 2. Finite automaton for S =
o YV ={S:}.

The set of all possible strings that can be generated by a given

DFA represent the language described by the finite automaton.

This language Ly can be represented by a regular expression

R. Formal definitions of regular expression can be found in
[6]. For the purpose of this paper, we define:

e R = s*: represents the language Lpr which consists of
all strings with O or more concatanated copies of s € X%,
ie, Lr ={s™:m > 0}.

o R = s™: represents the set of all strings with 1 or more
concatanated copies of s € ¥*,i.e.,, Lg = {s™ :m > 1}.

e R = RqRs: represents the language Lpr formed by the
concatenation of L, and Lg,, i.e. Lr = {8182 : 81 €
LRl,SQ S LRQ}.

({0,1,2},012, 725").

III. CAPACITY AND EXPRESSIVENESS

In this section, we present our results on the capacity and
expressiveness of tandem duplication system with bounded
duplication length. The section is divided into two parts; the
first part focuses on capacity and the second on expressiveness.

A. Capacity

Our first result is on the capacity of a tandem duplication
string system over ternary alphabet.

Theorem 1. For the tandem duplication string system S =

({0,1,2},012, TX4™), we have

3+V56
2

cap(S) ~ (.876036.

= logs

Proof: We prove this theorem by showing that the finite
automaton given in Figure [2| accepts precisely the strings in
S, and then finding the capacity using the Perron-Frobenius
theory [7]], [12].

The regular expression R for the language defined by this
finite automaton is given by (see [6] for details on how to find
a regular expression given a finite automaton)

R = (0t1H) T2+ (12t ot 2tot) 1t 0ty 2t (1t2h) "
3)
Let Ly be the language defined by the regular expression R
(and by the finite automaton). We first show that Lr C S.
The direct way of doing so is to start with 012 and generate
all the sequences in Lp via duplication. For simplicity of
presentation, however, we take the reverse route: We show
that every sequence in Ly can be transformed to 012 by a
sequence deduplications. A deduplication of length %k is an

operation that replaces a substring a« by « if |a| = k. For

dd<y,
two regular expressions R; and Ry, we use Ry —— Ro

to denote that each sequence in Ly, can be transformed into
some sequence in Ly, via a sequence of deduplications of
length at most k.

Note that R = B B>", where

By = (0T1H) 2t (1t2t)",
By =0T (2t0T) 1+ (0T1H) "2 (1t 2 )",

dd w dd<s . dd<-
We have B; — 012(12)* —% 012, since a* —> a

and (ab)* =3 b for all a,b € ¥. Furthermore,
By 2125 0(20)71(01)72(12)* 222 0(20)*1(01)*2 =%
0(20)°12 =% {02012, 012}.
“4)
Note for example that 1(01)"2(12)" s, 1(01)*2 as the

underlined 2 is always preceded by a 1.
We  thus R = BB

{01202012,012012, 012} % 012, proving that Lr C S.

To complete the proof of Lr = S, we now show that S C
L. In what follows, we say a finite automaton generates a
sequence s, if there is a path with label s from Start to an
accepting state. If an automaton generates uvw, with u, v, w €
>>*, we may use v to refer both to the string v itself and to the
part of the path that generates v. The meaning will be clear
from the context.

We show S C Lg, by proving the following for the finite
automaton in Figure

i) It can generate 012.

ii) If the automaton can generate pqr, with p,q,r € X* and
lq| < 3, it can also generate pg®r.

Condition i) holds trivially (see the path Start—S;—S3—.953
in Figure [2). In order to prove ii), we define:

dd<s
have —

e Path Label: Given a path a in a finite automaton, the
path label [, € ¥* is defined as the sequence obtained
by concatenating the labels on the edges forming the path.

e Path Length is the number of edges of the path.

o Duplicable Path: Let q be a path that ends at state C.
The path g is said to be duplicable if there exists path ¢’
that starts and ends at state C' such that the path labels
of ¢ and ¢’ are the same.



Suppose a finite automaton can generate pqr. If ¢ is dupli-
cable, then pg®r can also be generated by the finite automaton.
As a result, to prove ii), it suffices to show that for each state
C in Figure [2] all paths of length 1, 2 or 3 ending in C are
duplicable.

Now, we show that all paths ending in
{51, 52,S53,54,T5,T5, Ty, } with length < 3 are duplicable.
Note that there are no nontrivial paths ending in the Start
state.

Given a state C' and j € {1,2,3}, let P be the set of
all length-j paths ending in C' and let QJC be the set of all
length-j paths starting and ending in C. If

U= U

c c
aGPj aer

&)

then all length-j paths ending in C' are duplicable.

We prove that holds for all states and all j € {1,2,3}.
This is done by computing A, A? and A3, where A; is the
(labeled) adjacency matrix of the finite automaton given in
Figure [2] Here in computing the matrix products, symbols do
not commute, e.g. xy # yz. The adjacency matrix A and its
square A2, where x, y and z represent edges labeled by 0, 1,
and 2, respectively, and where rows and columns correspond
in order to Sy, 52,53, 54,15, 15,1y, are given by

zy0
Oyz0z00
00zz0yoO
A=]0yo0z00:z|,
Oy00x200
00z00yoO
000xz00 =z
z2 y2+a:y Yz 0 yx 0 0
0 y?+ay 224yz 2z  zl4yz 2y 0
9 0 Ty 22+yz 224 zx 0 y2+zy xz
A = 0 y’+zy yz z?4zx yzx 0 224z
0 y2+zy yz 0 :c2+ya: 0 0
0 0 22+yz zZx 0 y2+zy 0
0 Ty 0 22+ za 0 0 22tz

Each entry in these matrices lists the paths of specific length
from the state identified by its row to the state identified by
its column. For example, the entry (6, 3) of A2, which equals
22 + yz, indicates that there are two paths of length 2 from
T3 to S5 with labels 22 = 22 and yz = 12.

To check (B, we need to verify that the nonzero terms in
the non-diagonal elements of each column also appear in its
diagonal element. For A and A2, this can be easily done by
observing the matrices. For example, the entry (3,3) of A2
equals 22 + yz and contains all terms appearing in column
3 of A2, which are yz and z? + yz. We verified using a
computer that A> also satisfies the same condition. Hence,
we have shown that all paths of length at most 3 ending in
{Sl, 527 S3, 547 TQ, T37 T4} are duplicable.

This completes the proof of S C Lg.

Now that we have shown S = Lg, we use the Perron-
Frobenius theory [7]], [12] to count the number of sequences
which can be generated via the finite automaton in Figure [2]
The accepting state S3 is reachable from every other state in
the finite automaton, therefore we can compute the capacity
by calculating the maximum absolute eigenvalue e* of the
(unlabeled) adjacency matrix B of the strongly connected

component of the finite automaton (i.e. the subgraph induced
by S2, 53,54, 12,13, Ty).

110100
011010
B=| 184084 ©
010010
001001
The maximum absolute eigenvalue of B is e* = 3+2‘/5 o~
2.618034. By the Perron-Frobenius Theory, cap(S) =
logs e* ~ 0.876036. ]

While the proof of the preceding theorem providing the
exact capacity of the system under study is somewhat involved,
it is easy to see why the capacity is strictly less than 1. One can
observe from the regular expression for the finite automaton
that it cannot generate a string that has 210, 021 or 102 as a
substring, implying that the system is not fully expressive. As
we will see in Lemma ] such systems cannot have capacity 1.
It is worth noting that the set of strings that avoid 210, 021,
and 102 can be shown to have capacity ~ 0.914838, which is
slightly larger than the capacity of the system of the theorem.

B. Expressiveness

We now turn to study the expressiveness of tandem duplica-
tion systems with bounded duplication length. For complete-
ness we start with binary systems, which is indeed the simplest
case.

Lemma 3. The system S = ({0, 1}, s, St‘i"), for any s is not
fully expressive.

Proof: The system cannot generate (01)” as a substring
of any string in S for 2m > |s|. [ |
As shown in Example |1} to obtain fully expressive binary
systems, it suffices to increase the maximum duplication length
to 2.
The next theorem is concerned with the expressiveness of
S = ({0,1,2}, s, T24™). Larger alphabets and larger duplica-
tion lengths are considered in Theorems [3] and [

Theorem 2. Consider S = ({0, 1,2}, s, Tgt?,)”), where s is any
arbitrary starting string s € {0,1,2}*. Then, S is not fully
expressive.

Proof: A k-irreducible string is a string that does not have
a tandem repeat i, such that |«| < k. For example, 01201,
01210, 02101, and 01210121 are 3-irreducible strings, while
01212, 021021 and 01112 are not 3-irreducible. To prove the
theorem, we identify certain properties in new 3-irreducible
strings that may appear after a duplication and then construct
a 3-irreducible string that is neither a substring of s, nor it
satisfies the properties that every new 3-irreducible substring
must satisfy.

Consider a duplication event that transforms a sequence z =
uvw to z* = wvvw, where |v| < 3. Let = be a 3-irreducible
string of length at least 4 that is present in z* but not in z.
The string z must intersect with both copies of v in z* or
else it is also present in z. Furthermore, it cannot contains vv,
since otherwise it would not be 3-irreducible. To determine
the properties of z, we consider three case: [v| = 1,2,3. In
what follows assume ai,as,as € 3.



First, suppose |v| = 1, say v = a;. In this case, a string z
with the aforementioned properties does not exist as all new
substrings contain the square aiaq.

Second, assume |v|] = 2, say v = ajas. Then z* =
uaiasaiasw and x either ends with ajasa; or starts with
aoa102.

Third, suppose |v| = 3, say v = ajasas. So z* =
uajazazaiazazw. Recall that || > 4. The string « either
ends with ajasaza; or asazaias, or starts with asaszajas or
asajagas.

So for any new 3-irreducible substring x = x1 --- x;, ¥; €
2, ] Z 4, we have Tr1 = X3, T1 = T4, Tj = Tj—2, O T; =
x;_3. Now consider the string (0121)0, where £ > |s|. This
sequences is 3-irreducible but does not satisfy any of the 4
properties stated for z. Since it is not a substring of s and it
cannot be generated as a new substring, it is not a substring
of any y € S. ]

Next we consider the system (3,s,75"), [S| > 4 in
Theorem [Bl The proof of the theorem, uses the following
lemma, which states that the expressiveness of a system also
has a bearing on its capacity.

Lemma 4. If a string system S with alphabet ¥ is not fully
expressive, then cap(S) < 1.

Proof: Since S is not fully expressive, there exists a z €
3* that does not appear as a substring of any y € S. Let
|z| =m and g =n —m|]. We have

snz < (s -l

Since m is finite, cap(S) < 1. [

Theorem 3. Consider S = (Z,S,Té‘i,"), where || > 4, s is
any arbitrary seed € ¥* and k is some finite natural number.
Then S is not fully expressive, which also implies cap(S) < 1.

Proof: Suppose z = wvw € S, where |v| < k, and
let z* = wvvw be the result of a duplication applied to z.
Furthermore, suppose that x = x1 ---x;, where x; € X and
7 > k, is a squarefree substring of z* but not z. Similar to
the proof of Theorem [2] « intersects both copies of v but does
not contain both. As a result, either x; = x4, or x; = z;_;,
for some 2 <4 < k.

For definiteness assume X contains the symbols {0, 1, 2, 3}.
The sequence 0t0, where t is a squarefree sequence over the
alphabet {1,2,3} and |¢t| > max{|s|, k}, is not a substring
of s and cannot be generated as a substring since it does not
satisfy the conditions stated for = above. Note that such a ¢
exists since as shown by Thue [[15]], for an alphabet size > 3,
there exists a squarefree string of any length. Hence S is not
fully expressive. The second part of the theorem follows from
Lemma [ |

Theorem 4. Consider S = ({0, 1,2},012,7’%‘}1”). Then S is
a fully expressive string system.

Proof: Let S = ({0,1,2},012, 724"). Clearly, S’ C S.
From the proof of Theorem |I} we know that the automaton
of Figure [2| gives the same language as S’. By checking this
automaton, we find that all strings of lengths 1, 2, and 3, except

021, 210, and 102, appear as a substring of some string in .S’
and, as a result, some string in S. To generate 021, 210, and
102 as substrings of some string in .S, we proceed as follows:

012 — 01212 — 012101212

012 — 012012 — 01202012 — 012021202012

012 — 012012 — 01202012 — 012020102012

where the repeats are underlined.

We have shown that all strings of length 3 appear in S
as substrings. Now we show the same for every string w =
wiwowzw, of length 4. To do so, we study 3 cases based on
the structure of w:

I) First, suppose that wy is the same as wj, wsg, or ws.
For generating such w as a substring, we first generate w’' =
wiwows as a substring of some string and then do a tandem
duplication of ws if wy = ws, of wows if wy = wo and of
w1Wa2wWs if wyq = Wiq.

II) Suppose I) does not hold but w; = wy or we = ws.
If the former holds, first generate wywsw, and then duplicate
w1, and if the latter hold, generate w;wow,4 and duplicate wo.

IIT) If neither I) nor II) holds, then w = 1210, up to a
relabling of the symbols. In this case, we first generate w' =
0121 and then do a tandem duplication of w’ to get w. Note
that w’ is of type considered in I).

Until now, we have shown that all strings w of length at
most 4 appear as a substring of some string in S. We use
induction to complete the proof. Suppose all strings of length
at most m appear as a substring of some string in S, where
m > 4. We show that the same holds for strings of length
m+ 1.

Consider an arbitrary w =
consider two cases:

i) If all three letters in the alphabet occur at least once in
G —3C0m—20m—10m, then a1 equals a3, Gm—2, Gm—1,
or a,,, and w can be generated as a substring by a tandem
duplication of some suffix of size < 4 of w' = ajas - an,.
Note that by the induction hypothesis w’ can be generated as
a substring of some string.

ii) If at least one letter in the alphabet does not occur in
O —30m—20m—10m, then a,,_3dm,—_2a.,—1ay, 1S a sequence
over binary alphabet and so it has a tandem repeat. Therefore
w can be generated as a substring by tandem duplication.
Hence, we have proved the Theorem. |

Table [l summarizes the result of this subsection. It can
be observed from the table that a change of behavior in
expressiveness occurs when the size of the alphabet increases
to 4. If the size of the alphabet is 1, 2, or 3, for sufficiently
large maximum duplication length, the systems are fully
expressive. However, if the size of the alphabet is at least
4, then regardless of the maximum duplication length, the
system is not fully expressive. This change is related to the
fact that for alphabets of size 1 and 2, all squarefree strings are
of finite length, but for alphabets of size 3 and larger, there
are squarefree strings of any length. Specifically, in case ii)
in the proof of Theorem [d] we used the fact that the binary
String a,,—3am—2a,—1a,, has a tandem repeat. To adapt this

a102 " Qpam+1. We now



[ D)) [ s [ k | fully expressive | Reason |
{0} 0 >1 Yes Trivial
{0,1} arbitrary 1 No Lemma |3
{0,1} 01 >2 Yes Example [I
{0,1,2} | arbitrary <3 No Theorem [2]
{0, 1,2} 012 >4 Yes Theorem |4
[3X] >4 | arbitrary | arbitrary No Theorem [3
TABLE III

EXPRESSIVENESS OF TANDEM DUPLICATION STRING SYSTEMS
(3,5, T4

proof for |X| > 4, we would need to show that the (|X| — 1)-

ary string a.,—s@.;,—20,—16., has a tandem repeat. But this

is not in general true, since there are squarefree strings over

alphabets of size at least 3 per Thue’s result [15] and indeed

we showed in Theorem [3| again using Thue’s result, that the
tan

system (X, s, % ) is not fully expressive for |[X| > 4 and
any k.

IV. REGULAR LANGUAGES FOR TANDEM DUPLICATION
STRING SYSTEMS

Tandem duplication string systems that define regular lan-
guages are easier to study due to the fact that one can use
tools from the Perron-Frobenius theory [7]], [12] to calculate
capacity. It was proved in [[11] that for |¥| > 3 and maximum
duplication length > 4, the language defined by tandem
duplication string systems is not regular, if the seed contains
abc as a substring such that a,b and c are distinct. However,
if the maximum duplication length is 3, this question was
left unanswered. In Theorem [5] we show that the language
resulting from a tandem duplication system with the maximum
duplication length of 3 is regular regardless of the alphabet size
and seed. Further, in Corollary E] we characterize the exact
capacity of such tandem duplication string systems.

Theorem 5. Let S = (¥,5,724"), where ¥ and s are
arbitrary. The language defined by S is regular.

Proof: We first assume that s = ay - - - a,,,, Where a; are
distinct. The case in which a; are not distinct is handled later.
For 3 <7 <m, let

B S S +)* *
Ral...a] =aj ay (a1 a2) az (a ag) By asas
+ +
4 4

at (aff_laff)*Ba_j_wj_laj*,
where, for a,b,c € X,
Bape = a+(c+a+)*b+(a+b+)*c+(b+c+)*.

We already know from Theorem (1] that S = (X, s, T14")
with s = a1 - - - a,, is a regular language if m = 3. We show
that for m > 4, S represents a regular language whose regular
expression is given by R, q4,.--a,,- Let Lr be the language
defined by Ry, a,..a,,. It suffices to show Lr = S.

. dd<:
We first show that Lr C S by proving R as--a,, —=
. . dd<:
s. To do so, we show by induction that Ry, q4,...q; =

aias - - - a;. First note that this holds for ¢ = 3, from the proof
of Theorem E} Assuming that it holds for ¢, to show that this
also holds for 7 + 1, where ¢ > 3, we write

*

— + + .+ *
Ra1a2"'ai+l - Rala2"'az‘a‘i+1(ai ai+1) Baiflaiamﬁrl

dd<s " N
— a1az- - aiai+1(aiai+l) Ba,;_laiaprl
dd<s N

ayag - - aiai+1Ba,;_1a71a,;+1

dd<s «
I {alaQ s aiai+l(ai—1aiai+1) )
ayag - - Cliai+1(&i—lai-s-lai—laiai-s-l)*}

dd<s
— 102 GjQj41-

Here we have used the fact that cBgp. ddi> cabc which
follows from (). Hence, L C S.

We now show that S C Lg. The finite automaton for Ly
is given in Figure [3] Note that the seed s is in Lg. It thus
suffices to show that if © = pgr € L, then y = pg®r € Lp,
where p,q,r € X* and |q| < 3. We prove this by showing
that any length-1, 2 or 3 path ending in any state of the finite
automaton in Figure [3 is duplicable, or in other words (3]
holds for all the states in Figure |3] The finite automaton in
Figure [3] is a generalization of the one in Figure 2] Note that
in Figure [3| the states {S1, Sa, S3, Sy, To, T3, T4} are exactly
the same as those in Figure [2] More precisely, there is no
additional path ending in these states in Figure [3| So, from
the proof of Theorem 1, (E]) holds for these states.

Now we show for the newly added states, i.e. {S;,T;:¢ >
5}, (5) holds. Consider a set Qx = {S3k—1, S35k, S3k+1,
Ts—1, T3k, T3k4+1} for some k > 2. The labelled adjacency
matrix A for the subgraph induced by these states is given by

A:

where x is used as a label for ay, y for ax4+; and z for ag4o.
A? is given by

y2+a:y z2+yz 2T x2+ym 2y 0

Ty z2+yz 22+ zx 0 y2+zy Tz
AQ _ y2+3:y Yz 224 zx yx 0 22 taz
T yiey w2 0 2%4yz O 0 ’
0 z2+yz zZT 0 y2+zy 0
Ty 0 w2+zm 0 0 z2+wz

The non-zero terms in the non diagonal entries of each column
also appear in the diagonal entry of that column for A4 and A2
This can also be verified for .4%. Hence, we have shown that
any length-1, 2, 3 path starting in some state C' € Q) and
ending in some state D € @y, is duplicable for all k£ > 2.

We also need to show that any length-1, 2, 3 path that ends
in Q% but starts in a state that is not in (), is duplicable. Note
that the states in (0 are not reachable from states € Q- with
k' > k, any possible path of length-1, 2 or 3 ending in some
state D € Qy and starting in a state C' € Qs with k' < k, has
to pass through state S3;_3. Now, we enumerate the labels of
all length-1, 2 and 3 paths ending in some state in (); but
starting in some state € Qs with k' < k.

o Label of a path of length 1: a;yo (ends in Ssi).



P s Capacity Fully Expressive
{0} 0™ for some m > 1 1 1 Yes
0,1} 01 0 No
0,1} arbitrary but not a™ for some a € {0,1} > 2 1 Yes
] >3 arbitrary but not a™ for some a € X 2 log|s, 2 No
%] >3 zabcy (randy € Y*, a,bandc € Y anda #b# c#a) 3 log |5 3+2 5 No
[¥] >3 | No 3 consecutive symbols in the seed are all distinct and s # a™ for a € X 3 log|s 2 No
{0,1,2} 012 >4 ? Yes
3] >4 arbitrary >4 ? No

TABLE IV
CAPACITY AND EXPRESSIVENESS FOR DIFFERENT TANDEM DUPLICATION STRING SYSTEMS (E, s, 7-<t7€n)

e g

as ai az

@ . /% =

az
az

U

as

as

Fig. 3. Finite automaton for S = (3, a1a2a3 - - - am, Té%n)

o Label of a path of length 2: i) ending in Ssx: ax410k+2,
Qj+20k+2, 1) ending in Ssiy1: ap4oay, iii) ending in
T3p: Qg420K+1-

o Label of a path of length 3: i) ending in Ss;_1:

Ar+4+20EAK41, 11) ending in Sgkl Akp4+10k4+10K42,
Apak+10K42, Ak+10k4-20k42, Ap4-20k420k+2,
Ak420k+10k42, i) ending in  Szpi1:ak410k420k,
Gk420K0k,  Qkt+20k+2ak, 1v) ending in Tyt
Qg 10k120k41, k420 410k+1, k420K +20k41, V)

ending in T5541: Qp420kQk12-

All the path labels enumerated above are duplicable which can
be verified by inspecting A, A2, A3, for paths of length 1, 2
and 3 respectively. This completes the proof of S C Lp.

We have proved the statement of Theorem [5] assuming all
a;’s in the seed s to be distinct. Now assume the symbols of s

are not distinct. We color the symbols of s so that they become

tan

distinct and obtain the system S = (f}, §,725" ). Applying the

preceding proof for distinct symbols to S, we find that S is
regular. Let h : Y > Xbea mapping that removes the colors.
This mapping is called a morphism. By [14], we have that
S = n(S) is also regular. [ |
An immediate corollary on the capacity of tandem duplica-
tion string system considered in Theorem [3] is stated next.

Corollary 5. If for S in Theorem s contains abc as
a substring such that a,b, and ¢ € Y are distinct, then
cap(S) = logy, 3+2\/g =~ 0.876036 logs;| 3. Otherwise, except
for the seed s of the form a™, cap(S) = log|s; 2. If s = a™,
cap(S) = 0.

as

Am—1

Proof: If abc occurs as a substring of the seed s such that
a,b and ¢ € ¥ are distinct, then the adjacency matrix of the fi-
nite automaton for By (strongly connected component of the
finite automaton for Ry, 4,...q,,) has the maximum eigenvalue.
Therefore, the cap(S) = logy, 3+2\/5 ~ 0.876036 log s, 3 (see
(@) in the proof of Theorem Ei)

If no 3 consecutive symbols in the seed s are all distinct
and s # a™, then the maximum capacity component is a finite
automaton only over 2 distinct symbols as in Figure[l] In other
words, terms of the form (a; a;,;)* determine the capacity.
Hence the capacity is logs 2.

When seed s = a™, there is exactly one sequence of any
given length in the system. Hence cap(S) = 0. ]

The following examples illustrate the statement of Theo-
rem [5] and an application of its proof method.

tan)

Example 6. The string system S = ({0, 1,2, 3}, 0123, 7%
is regular by Theorem [3] and the regular expression is given
by

Roo = 01 1H(07 1) 24 (1727) " By *37 (273%) " Bias™.
By Corollary [ the capacity system
~ (0.876036 log, 3 ~ 0.694242. |

Example 7. The string system S = ({0,1,2},0112, 7X4") is

regular by Theorem [3} and the regular expression is given by

Roi1z = 0P1H(0T 1) 17 (1 1) Bo *27 (112%) " Bpo™.

of this

By Corollary ] the capacity of this system is given by
logs 2 ~ 0.63093. g



S

0 1

Fig. 4. Finite automaton for S = ({0,1,2},012,72%"). The regular
expression R = 0T 1+ (0F1+)* 2+ (1+2+)". B

When a;’s are assumed to be distinct it can be verified from
the regular expression R, ...q; in the proof of Thereom E] that
the last occurence of a; is before the first occurence of a; 3
forany i =1,2,--- ,j—3 forall z € S.

The following corollary follows for maximum duplication
length 2 using the same idea as in Theorem [3]

Corollary 8. The capacity for S = (X, a1ag - - - am, TE5") is
given by logm 2, except for the case in which seed s = a™
for a € X. In that case, the capacity is 0.

Proof: The string system S = (X, ajaz - - - am, TI4") is
regular. This can be proved using the same method as used
in the proof of Theorem [5] The regular expression Qq, a,...a,,
for m > 2 is given by

++(

* * *
Qaras-a, = 07 a3 T +) ag’(a"' +) o L(a-i_ +)

ay ay 2 a3 a m—1%m
As in Proof of Corollary [5 the capacity is determined by
term(s) of the form (a; a; ;)" except for the case when seed
s = a™. Therefore, the capacity for language represented by
Qajas--a,, 18 1085 2, when s # a™ and 0 when s =a™. W
The finite automaton for a special case of Corollary [§] with
|X| = 3 is given in Figure
Table lists the capacity and expressiveness results pre-
sented in this paper and also the open question on capacity
when k£ > 4. The expressiveness results follows from Table

V. CONCLUSION

In this paper, we showed that for tandem duplication string
systems with bounded duplication length if the maximum
duplication length is 3 or less, the language described by the
string system is regular. Further, we computed exact capacities
for these systems. Computing the capacities for bounded
tandem duplication string systems with maximum duplication
length greater than 3 remains an open problem.

Using Thue’s result [[15], we showed that a tandem dupli-
cation string system cannot be fully expressive if the alphabet
size is > 4. However, for an alphabet of size 3 or less such

systems can be fully expressive. Therefore, we have com-
pletely characterized fully expressive and non-fully expressive
tandem duplication string systems with bounded duplication
lengths. As future work, we would like to generalize the
notion of expressiveness by counting the asymptotic number
of substrings of length n that a string system can generate.
Mathematically, we may define the expressiveness Exp(S) of
a string system S as
Ezp(S) = limsup M.
n— 00 n

Here E,,(S) represents the number of substrings of length n
that can be generated by S. It is notable here that with this
definition of expressiveness, a fully expressive string system
S has Exp(S) = 1.

In this paper, we studied questions related to the generation
of a diverse set of sequences from a seed given a tandem
duplication rule. One can also study the minimum number of
steps required to generate a given sequence of length n from
a squarefree seed and therefore define the notion of distance
between a sequence and its seed given a tandem duplication
rule. For the special case of binary sequences, we have studied
this distance in [1]].

It is notable here that the same sequence can be deduplicated
to (or equivalently, generated from) more than one square-
free seed given a tandem duplication rule. For example: the
sequence 012101212 can be deduplicated to 012 as well as
0121012 under bounded tandem duplication with maximum
duplication length 4 in the following way

dd<y dd<y
012101212 —— 01212 —— 012.

dd<y
012101212 —— 0121012.

Here the underlined portion represents the repeat that is being
deduplicated in a given step. This raises the question of the
uniqueness of squarefree seeds for strings generated by a given
tandem duplication rule. We have studied this question in [8]]
in the context of duplication errors.
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